Secretion of hybrid proteins by the Yersinia Yop export system.
نویسندگان
چکیده
After incubation at 37 degrees C in the absence of Ca2+ ions, pathogenic strains of Yersinia spp. release large amounts of a set of plasmid-encoded proteins called Yops. The secretion of these proteins, involved in pathogenicity, occurs via a mechanism that involves neither the removal of a signal sequence nor the recognition of a C-terminal domain. Analysis of deletion mutants allowed the secretion recognition domain to be localized within the 48 N-terminal amino acids of protein YopH, within the 98 N-terminal residues of protein YopE, and within the 76 N-terminal residues of YopQ. Comparison of these regions failed to reveal any sequence similarity, suggesting that the secretion signal of Yop proteins is conformational rather than sequential. Hybrid proteins containing the amino-terminal part of YopH fused to either the alpha-peptide of beta-galactosidase or to alkaline phosphatase deprived of its signal sequence were efficiently secreted to the Yersinia culture medium. This observation opens new prospects in using Yersinia spp. as chimeric-protein producers and as potential live carriers for foreign antigens.
منابع مشابه
YscB of Yersinia pestis functions as a specific chaperone for YopN.
Following contact with a eucaryotic cell, Yersinia species pathogenic for humans (Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica) export and translocate a distinct set of virulence proteins (YopE, YopH, YopJ, YopM, and YpkA) from the bacterium into the eucaryotic cell. During in vitro growth at 37 degrees C in the presence of calcium, Yop secretion is blocked; however, in the absence o...
متن کاملYop fusions to tightly folded protein domains and their effects on Yersinia enterocolitica type III secretion.
Yersinia enterocolitica organisms secrete Yop proteins via the type III pathway. Translational fusion of yop genes to ubiquitin or dihydrofolate reductase results in hybrid proteins that cannot be secreted. The folding of hybrids prevents their own transport, but it does not hinder the type III secretion of other Yops.
متن کاملLcrQ Blocks the Role of LcrF in Regulating the Ysc-Yop Type III Secretion Genes in Yersinia pseudotuberculosis
Pathogenic Yersinia species employ the Ysc-Yop type III secretion system (T3SS) encoded by a highly conserved pYV virulence plasmid to export the virulence effectors into host cells. The Ysc-Yop T3SS is tightly regulated by multiple contributing proteins that function at different levels. However, systematic transcriptional regulation analysis of Ysc-Yop T3SS is lacking and the detailed mechani...
متن کاملGenetically Engineered Frameshifted YopN-TyeA Chimeras Influence Type III Secretion System Function in Yersinia pseudotuberculosis
Type III secretion is a tightly controlled virulence mechanism utilized by many gram negative bacteria to colonize their eukaryotic hosts. To infect their host, human pathogenic Yersinia spp. translocate protein toxins into the host cell cytosol through a preassembled Ysc-Yop type III secretion device. Several of the Ysc-Yop components are known for their roles in controlling substrate secretio...
متن کاملThe SycN/YscB chaperone-binding domain of YopN is required for the calcium-dependent regulation of Yop secretion by Yersinia pestis
Numerous Gram-negative bacterial pathogens employ type III secretion systems (T3SSs) to inject effector proteins into eukaryotic cells. The activation of the type III secretion (T3S) process is tightly controlled in all T3SSs. In Yersinia pestis, the secretion of effector proteins, termed Yersinia outer proteins (Yops), is regulated by the activity of the YopN/SycN/YscB/TyeA complex. YopN is a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 173 5 شماره
صفحات -
تاریخ انتشار 1991